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ONE-DIMENSIONAL NONLINEAR MODEL FOR DETERMINING COMBUSTION 

INSTABILITY IN SOLID PROPELLANT ROCKET MOTORS 

by Louis A. Povinell i 

Lewis Research Center 

SUMMARY 

A nonlinear analysis of combustion instability in a solid propellant rocket geometry 
was performed by using the Priem-Guentert one-dimensional model composed of a thin 
annulus. Nondimensionalization of the basic conservation equations yielded three para- 
metric groupings, which were representative of a burning rate, a wall loss, and a viscous 
loss. The propellant was assumed to  react in accordance with the normal steady-state 
expression and included an erosive burning term. 
minimum pressure amplitude required for instability as a function of the parametric 
groupings. Erosive burning, a high pressure exponent, and a low axial velocity were 
found to  decrease the stable operating range for rocket motors. 
were affected more by erosive burning and axial velocity than by the pressure exponent. 
The regions of stable motor operation were found to be insensitive to  the wall-loss and 
viscous dissipation parameters. 

The results of the analysis yielded the 
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INTRO D U CTl ON 

The subject of solid propellant combustion instability has received a substantial 
amount of attention both experimentally and theoretically in recent years. .Numerous re- 
views have appeared in the literature. The most recent ones were Trubridge (ref. l), 
Hart and McClure (ref. 2), and Price (ref. 3). A status report (1964) by Berl, Hart, and 
McClure (ref. 4) is also available. These references together summarize the field of 
solid propellant instability from practical hardware problems to  the most recent and so- 
phisticated analysis. These papers (along with those referenced therein) serve to  point 
out the lack of understanding in certain aspects of the field as well as the complexity of 
the unstable phenomenon occurring in solid propellant rocket motors. A certain degree 
of experimental success has been achieved in understanding the interaction between the 



flow field and the combustion processes (ref. 5). Similarly, linear stability analysis 
(ref. 6), which considers the participation of the solid phase during instability, has been 
successful in predicting the intermittent behavior observed during rocket motor firings. 
Certain quantitative aspects of linear stability theory have been compared with experi- 
mental measurements, and limited success has been demonstrated, namely for high pres- 
sure  combustion of double-base propellants (refs. 7 and 8). Consideration of additional 
factors in the linear theory, such as the effect of thermal radiation on the propellant re- 
sponse (ref. g), has improved the agreement between analysis and experiment. 

prediction of the unsteady burning behavior of rocket motors is not possible. Considera- 
tion of the nonlinearity of the phenomenon may serve to  improve our understanding of 
combustion instability. Recently, nonlinear effects arising from erosive burning have 
been analyzed. The analysis showed that significant wave form distortions may occur 
even for relatively small amplitudes of the pressure oscillation (ref. 10). The status of 
finite amplitude theory is presented in reference 2. The purpose of the present report is 
to  give the results of a nonlinear analysis of the problem of acoustic stability in solid pro- 
pellant rocket motors by using a one-dimensional model that incorporates the nonlineari- 
ties arising from the dependence of burning rate on velocity and pressure, and require- 
ment of finite amplitude pressure disturbances, and the nonlinear terms arising in the 
conservation equations such as the viscous dissipation effects in the gas. Although the 
one-dimensional model used does not include all the features of a real rocket motor, its 

The current understanding of combustion stability, although helpful, is such that a 
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Figure 1. - Geometry of analytical model. 

behavior will be helpful in understanding com- 
bustion instability in a complete engine. The 
analysis is limited to the gas modes only and 
hence is applicable either for the case where the 
gas cavity is large relative to the propellant 
thickness (ref. 11) o r  where the viscous damping 
in the solid is quite large s o  that the solid will 
not sustain resonant motion (refs. 12 and 13). 
An additional calculation of the combustion sta- 
bility limit is presented that considers the en- 
ergy gain or  loss due to wall motion. 

THE0 RET ICAL MO DEL 

Description of Model 

A simple rocket geometry is shown in f ig-  
ure  l(a). It consists of a hollow cylindrical 
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grain extending from the motor-head end to  the nozzle entrance with combustion occurring 
on the inside surface of the grain. The propellant is assumed to  be rigidly bound to  the 
outer case which is inflexible. The model used is a thin annulus inside the combustor at 
the propellant surface (fig. l(b)), having a thickness A r  and a length Az.  Flow through 
the annular volume is composed of combustion gases generated both upstream of the an- 
nulus and at the solid-gas interface of the annulus. The axial velocity is assumed con- 
stant over the cross section of the rocket gas core, and acceleration of the axial flow oc- 
curs through the annulus. Gas addition due to combustion is assumed to be added uni- 
formly throughout the combustor volume. A simple power law is assumed that relates 
the combustion rate to the instantaneous local pressure and gas velocity. 

Conservation Equations 

The conservation equations a r e  written in terms of the instantaneous value of the 
flow properties. Perturbation of the flow in the 8 -direction is subsequently introduced. 
The analysis follows the technique of Pr iem and Guentert (ref. 14) in presenting, for the 
8-direction, the pertinent one-dimensional conservation equations with mass addition: 

Continuity equation: 

I Momentum equation: 
i 

- =  aP -v .  p v + w  
at  

Energy equation: 

aT 2 P  1 

a t  J gJ 
PC - = -pcv(a- V)T + hv T - - v -  v'- - r:VF+ w 

where the liquid velocity vector that appeared in reference 14 has been omitted. (Symbols 
a r e  defined in appendix A .  ) Before proceeding to the nondimensionalization of the conser- 
vation equations, the possible contributions due to  wall losses will be discussed. As 
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mentioned in the INTRODUCTION, the solid modes of the viscoelectric material as well 
as the thermal expansion and compressibility of the propellant were not generally con- 
sidered. This limits the general analysis, therefore, to  a consideration of the normal 
gas modes in the rocket cavity. The applicability of the results presented herein is re- 
stricted thereby to  either of two situations: namely, (1) where the propellant grain thick- 
ness is small relative to the gas cavity radius, o r  (2) where the viscous damping in the 
solid is quite large so that the solid will not sustain resonant motion. For the first case 
the behavior of the gas-solid system corresponds rather closely to a system composed 
only of gas (ref. 11). For the second case where the viscous damping in the solid is large 
the impedance mismatch at the solid-gas interface will be large, and practically all the 
acoustic energy incident on the solid surface will be reflected back into the gas (ref. 12). 
This energy loss is limited to  the amount of energy transmitted into the solid and may be 
represented by an admittance whose real part is (psas)- (ref. 13), which is a negligibly 
small quantity. 

oscillation, the energy loss (or gain) can be calculated by using the results of references 
15 and 16 (see appendix B). This loss term may then be subtracted from the right side 
of the energy equation (3). The effect of this loss term was shown to be negligible. 

following transformations (ref. 14): 

1 

In the more complicated situation where the viscoeleastic material participates in the 

The transport equations (l), (2), and (3) a re  now nondimensionalized by means of the 

The following nondimensionalized equations result: 

i 

Continuity : 
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Motion: 

Energy: 

where 

A 

2 
Po(P - 1) = J 

and 

(9) 
2 Z 1  = a J  (k r )x(Real part admittance) 
m g l  

The admittance may be calculated from the expression given in appendix B or  obtained 
from the results of references 6, 11, 15, and 16. Using the following relations (ref. 14) 

R P = p -  T R 2 gT - y = a  
OM M 

cV l-l - z i l  
x 

C 

P= Y 
cV 

R 1  cv--- - 
J M Y - 1  

reduces the grouping of the variables in the conservation equations (6) and (7) to  
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The dimensionless groups appearing in the preceding conservation equations may be trans- 
formed to the usual rocket combustor variables by applying the following expressions 
(ref. 14): 

R 
M 

Po = Po -To 

9 0  
2 R  a = g -  

M 

rl S r 

These transformations result i n  

J 

and 
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The dimensionless groups a r e  now defined as 

When the ideal gas relation, the c* expression, and the speed of sound relation are sub- 
stituted into equation (14), this ratio becomes 

where At/As represents the reciprocal of the usual K ratio for  solid propel-ant rocket 
motors. 

2 
PorZl = y 

pocvToa 

The first te rm represents either the burning rate o r  the K ratio parameter (eq. 16), 
4 is the viscous dissipation parameter, and X is the wall-loss parameter. 

The transport equations a r e  now written by assuming that the radial velocity and all 
derivatives in the radial direction a r e  zero, that the axial velocity does not vary with 
angular position or time, and that &;/a’, and all second derivatives in the axial direction 
a r e  zero. For the annular combustor the reduced radial distance r1 is always unity. 
The transport equations a r e  as follows: 

7 



Continuity : 

Momentum in 0-direction: 

Momentum in z-direction: 

Energy: 

a2T' 

a tf a Z' (ae1)2 
+ v; E) + ff(y) - - 

Ideal gas: 

where 0' = 8 and z = z'. 

are integrated through the entire volume of the annulus. None of the te rms  in the axial 
or  radial direction were assumed to  vary. In addition, the total mass, momentum, and 

In order to  evaluate the derivatives in the axial direction, the conservation equations 
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energy in the annulus are invariant with time, and none of the te rms  vary in the small 
distances Arl and Az' . The only derivatives allowed in the zr -direction are aT1/azl, 
av;/az?, apf/azl, and aPf/azf, and they do not vary with angular position. There is no 
net loss nor gain of mass, momentum, and energy fluxes in the angular direction since 
the annulus is closed (ref. 14). The following expressions,' therefore, permit the evalua- 
tion of the derivatives with respect to z* : 

Continuity : 

Momentum: 

Energy: 

Ideal gas: 

Introducing a pressure disturbance allows the evaluation of the axial derivatives with the 
use of equations (24) to (27). Then the pressure, temperature, particle velocity, density, 
and burning rate at various positions around the annulus can be calculated as functions of 
time by using equations (19) to (23). A burning rate expression, however, must be intro- 
duced before proceeding. 
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Burning Rate Expression 

Uniform decomposition of the propellant is assumed around the circumference. Burn- 
ing then occurs at some rate dependent on the position around the annulus and is accom- 
panied by gas flow in the axial direction. The grain was assumed to  decompose and to  
react in accordance with the normal strand rate expression with an additive erosive ef- 
fect: 

w = -  ps pPn + k(pv) "1 
2rl 

Quasi-steady behavior is assumed with no variation 

(2 8) 

in the propellant response with 
frequency. Expression (28) is normalized by the average rate 

w0 = - PS PP: + k (povo) "1 
2rl 

which yields 

where E is the erosive contribution to the burning rate divided by the strand rate: 

CPE 

Now 

Substituting for  ( v ' ) ~  into equation (29a) gives the instantaneous local burning rate, which 
is dependent on the amplitude of the pressure disturbance: 
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Technique for Numerical Solutions 

The disturbance introduced consisted of an instantaneous adiabatic pressure change 
at time t' = 0 and is given by 

I A 
P' = 1 + 1 sin e' 

2 

v' = 0 e J 
The disturbance introduced by equation (32) represents the first standing transverse 
(sloshing) mode in the annulus. 

The input quantities that were specified for the numerical solution of the equations 
were the pressure disturbance amplitude A the burning rate parameter A, the axial P' 
Mach number of the gas flow v;, the amount of erosive burning E ,  the pressure expo- 
ent n, the velocity exponent m, the ratio of specific heats y ,  the wall loss factor Y ,  
the viscous dissipation parameter 
temperature, density, and tangential velocity expressions (eq. (32)) were substituted into 
the integrated forms of the conservation equations (24), (25), and (26); the ideal gas law 
(eq. (27)); and the burning rate expression (eq. (31)). Computer calculations of the axial 
derivatives were then made at 20 equally spaced positions around the annulus at a time t'. 
The numerical values of the axial derivatives were then substituted into the differential 
form of the conservation equations (19), (20), (2l), (22), and the ideal gas relation 
(eq. (23)) to yield a solution for the pressure, temperature, and velocity at each annular 
position for  a given time. The computational procedure was then repeated by using a 
time interval t' equal to 0.031. This time interval was such that meaningful results 

4. These specified quantities as well as the pressure, 
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' could be obtained prior to  the onset of computer noise. Computations were performed to  
a minimum of t' = 4n and a maximum of t' = lor, which represent twice and five t imes 
around the annulus, respectively. In order to determine whether the amplitude of the dis- 
turbance grew, remained constant, or  decreased with time, the peak pressure minus the 
minimum pressure (at any chamber position) was plotted as a function of time. Growth 
of the disturbance was interpreted as an unstable condition; whereas an amplitude decay 
was indicative of a stable situation. Since the specified initial conditions yielded only a 
single point for  a stability plot, it was necessary to make numerous calculations for a 
complete stability map. The line dividing the unstable region from the region of stability 
corresponded to the position of neutral stability. These results a r e  discussed in the fol- 
lowing section. 

RESULTS A N D  DISCUSSION 

Discussion of Solutions 

The peak-to-peak amplitude of the pressure oscillations showed a very definite be- 
havior dependent on the amplitude of the initial disturbance and the parameter A. For 
those values of pressure amplitude and A that were very stable the oscillation quickly 
decayed to a low percentage of the chamber pressure within several cycles; whereas in 
the unstable regime the amplitude reached a value of 50 to 100 percent of the chamber 
pressure within a half cycle. In many cases the wave shape showed considerable distor- 
tion from sinusoidal behavior. 

Combustion Sensitive to Pressure Only 

Figure 2 shows the regions of stable and unstable operation obtained from observing 
the amplitude of the pressure disturbance with time. The ordinate represents the mini- 
mum disturbance required to cause the motor to become unstable for a given value of the 
burning rate parameter A. At low values of the burning rate parameter A it was found 
that the system became unstable from small disturbances; whereas at higher A values 
an amplitude of approximately 10 percent was required to initiate instability. The erosive 
contribution in this case is zero, and hence the stability boundary is representative of a 
pure pressure response of the combustion. The axial Mach number v; is 0.01, which 
corresponds to some position near the head end of the combustion chamber. The pressure 
index n was 0.4, and the wall-loss parameter 2 was taken as 0.003. The viscous 
loss parameter / was set equal to 3x10-l1 for all calculations. 
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In order to  arrive at a value of d, the equation given in appendix B was evaluated 
fo r  both a large scale motor (120-in. i. d. oscillating at 175 cps) and a small scale motor 
(4-in. i. d. oscillating at 5000 cps), both operating at a mean pressure of 750 pounds per 
square inch. The ratio of the inner to the outer diameter was taken as 0. 5, and the den- 
sities, speeds of sound, and viscosities for the gas and solid were those given in refer- 
ence 16. The specific heat ratio was 1.2. The value of the admittances thus calculated 
was in the neighborhood of 0. 5X10-8 cubic foot per pound force second. In order to as- 
certain the effect of the wall-loss parameter, the stability map was calculated for values 
of 3 from zero to 0.003, which is two orders of magnitude greater than that calculated 
from equation (B2) (appendix B). No change in the stability regime was found. Hence, in 
subsequent calculations the wall-loss parameter 3 was neglected. The analysis as- 
sumed no change in the wave characteristics due to interactions at the vibrating wall. The 
energy loss te rm was added in phase with the pressure. 

Combustion Sensitive to  Pressure 
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Figure 4. - Pressure disturbance required for instability 
as function of erosive burning factor. Pressure exponent, 
n = 0.4; velocity exponent, m = 0.8; axial Mach number, 
v i  = 0.01. Unstable region i s  above stability boundaries. 

and Velocity 

The effect of introducing erosive burn- 
ing is illustrated in figure 3 where the ero- 
sive contribution to the burning rate divided 
by the strand rate E is 10, 50, and 100 
percent and the velocity exponent m is 
0. 8. For E = 0. 1, the stability boundary 
above a pressure amplitude of 7 percent is 
changed drastically from that of pure pres- 
sure  response of the burning rate (fig. 2). 
Increasing E to 0. 5 and 1 reduces the zone 
of stable motor operation considerably and 
thereby enchances the occurrence of in- 
stability. Erosion appears, therefore, to 
have an extremely important influence on 
the stability behavior of a rocket system. 
Figure 4 shows the stability results as a 
function of the erosive factor. As a com- 
parative measure of the pressure and veloc- 
ity effects, the burning rate exponent n 
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was assigned a value of 0. 8, equivalent to the erosive velocity exponent. Figure 5 shows 
that the resulting stability boundary has been shifted downward and toward the right, 
which reduces the region of stable operation. Hence the higher burning rate propellant 
would have a greater tendency toward unstable behavior than would the low burning rate 
propellants. The change in the stability boundary caused by the pressure exponent is not 
nearly as large as that caused by erosive burning of only 10 percent. Thus, erosive burn- 
ing with pressure sensitivity appears to  represent a more critical parameter for  deter- 
mining motor stability than pure pressure responsiveness. 

Port Mach Number Effect 

The effect of axial Mach number on stability, as shown in figure 6, revealed in- 
creased stability with increasing flow velocity through the motor cavity. At a Mach num- 
ber v; of 0.4, the stable region was slightly increased compared with that at a Mach 
number of 0.01. The stabilizing effect of the axial velocity was seen most effectively for  
the case where the erosive contribution E was equal to 0. 1. With a Mach number v; 
of 0.01, a change in E from 0 to  0. 1 drastically reduced the stability boundary; whereas 
with a Mach number of 0.4 the effect of changing E from 0 to  0. 1 was to reduce the sta- 
bility limits only a slight amount. 
0.0001) the entire map was found to  be unstable at every 4 and Ap/p value for both 
E = 0 (pressure response only) and E = 0 . 1  (pressure and erosive velocity responses). 
The stabilizing influence of axial flow velocity was probably due to the fact that the vec- 
torial addition of the axial Mach number v; and the tangential Mach number v; is vir- 
tually independent of the magnitude of v; unless v; becomes very small. At low values 
of v;, the mean flow through the combustor was then significantly affected by vb. It is 
likely that the axial Mach number was higher than 0.0001 because of the existence of re- 
circulating flow or  the presence of turbulence near the head cavity. 

For very low values of the axial velocity (e. g., 

Chemical Kinetic Calculation 

If propellant burning is assumed to follow an Arrhenius relation rather than expres- 
sion (31), the equations to  be solved reduce exactly to  those used in reference 14. Then 
the results of reference 14 can be compared with those obtained herein. Figure 7 shows 
the results of reference 14, which used the Arrhenius rate law (chemical kinetic model), 
and the results obtained in this study with expression (31). The figure shows that for the 
chemical kinetic model to  be dominant in predicting the stability boundary it is necessary 
to have an unreacted gas-phase concentration of approximately 10 percent. 
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System Losses and Stability 

Changes in the viscous-dissipation parameter f a re  not expected to change the sta- 
bility limits since the shear s t resses  p(ave/ae) in the one-dimensional model are negli- 
gible; hence the damping produced by viscous forces would not be significant. In refer- 
ence 14, # was varied by four orders of magnitude with no resulting effect on stability. 
A variation in y from 1.0 to 1. 5 also did not affect the results. Losses due to the pres- 
ence of the head- and nozzle-end cavities were not considered, but they might be effective 
in shifting the stability boundaries to lower values of A, thus increasing the stable oper- 
ating region. 

The stability of a three-dimensional combustor cannot be determined by this analysis. 
Beltran and Frankel (ref. 17) have used the analysis, however, to find the most sensitive 
region in a combustor by varying the radius and axial velocity. In reference 17 the most 
sensitive region was assumed to determine overall engine stability. 
Priem and Reese (unpublished NASA data) have shown that with a two-dimensional geom- 
etry consisting of a long annulus the overall stability is generally determined by the most 
sensitive zone. It is anticipated, therefore, that overall motor stability can be deter- 
mined by locating the most sensitive region in the combustor. The two-dimensional sta- 
bility boundaries are somewhat restricted relative to the one-dimensional results (Priem 
and Reese, unpublished NASA data). 

Recent studies by 
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CONCLUDING REMARKS 

Based on the foregoing results, both the amplitude of the pressure disturbance and 
the A value, as well as the amount of erosive burning, must be known to predict rela- 
tive combustion stability in solid rocket motors. A further requirement is that the 
changes in these parameters with motor running time must be known. As a solid rocket 
grain burns and its dimensions change, the location on the stability plot may shift to the 
right or left or  remain at a constant value of A. At the same time the axial flow veloc- 
ity is being influenced by the change in the cavity dimension. For an internally burning 
cavity with increasing port diameter the axial Mach number and the amount of erosive 
burning will decrease with time. The pertinent stability boundary must be used as indi- 
cated by the value of E .  If a variation in the amplitude of the disturbance occurs during 
motor operation, a change in the location of the motor operating point on the stability map 
will result. It is evident, therefore, that as the dimensions of a motor grain change with 
operating time various attendant changes occur so that the operating condition of the motor 
is located in stable o r  unstable regimes. This yields an  explanation for  the appearance 
and disappearance of instability during a rocket motor firing. 

Finally, it was demonstrated that the gas phase attenuation and nozzle losses would 
damp out a pressure disturbance in the absence of a driving force, namely a zero pres- 
sure  exponent on the burning rate and a zero erosive contribution. 

SUMMARY OF RESULTS 

A one-dimensional, nonlinear analysis of transverse mode instability in a solid pro- 
pellant rocket geometry indicated the relative combustion stability based on three para- 
metric groupings: burning rate, wall-loss, and viscous-dissipation parameters, of 
which only the burning rate parameter appeared to be significant in the one-dimensional 
model with a nonvibrating solid phase. The results of the analysis, presented as the 
minimum pressure amplitude required to incite instability as a function of the burning 
rate parameter, showed that erosive burning was an important factor in determining sta- 
bility. With only a 10-percent contribution to the burning rate due to  erosion, the sta- 
bility boundary was significantly affected s o  as to  reduce the stable region of operation. 
A two-fold increase in the pressure exponent in the burning rate law also showed a de- 
crease in the stable operating regime. This effect was not as pronounced as the erosive 
effect. Increasing the axial flow velocity was found to  enhance stability. At a Mach num- 
ber  of 0.0001, with either zero- o r  10-percent erosion, no stable operating condition was 
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found. The results of the analysis yielded an explanation for the appearance and disap- 
pearance of instability during a rocket motor firing. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 4, 1966. 
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APPENDIX A 

SYMBOLS 

AP 

AS 

At 
a 

ad 

C 

P C 

cV 

C* 

Ed 

f 

f(Y) 

g 

J 

Jm( 1 

20 

peak-to-peak pressure disturb- 
ance, (Pmax - Pmin)/Po 

2 propellant burning area, f t  

nozzle throat area, f t  

average speed of sound in gases, 

2 

ft/sec 

speed of shear waves in solid, 
ft/sec 

speed of dilational waves in 
solid, ft/sec 

strand burning rate constant 

specific heat at constant pres- 
sure, Btu/(lb) (OF) 

specific heat at constant volume, 

BW(lb)(OF) 

characteristic exhaust velocity, 
ftfsec 

viscoelastic wall losses (de- 
fined in eq. (4)) 

frequency of oscillation, 
radians/sec 

function of gamma, 

acceleration due to gravity, 
32.2 ft/sec2 

mechanical equivalent of heat 

Bessel function 

/ 

k 

kc 

kg 

kS 

K 

$ 

M 

u u  

m 

P 

R 

r 

r S 

'r 
T 

t 

viscous dissipation parameter, 

Poc*fRpog 

erosive burning rate constant 

wave number for  compression 
wave in solid, f/ad 

wave number for  sound wave in 
gas, f/a 

wave number for equivoluminal 
wave in solid, f/cs 

propellant surface a rea  throat 
area, As/At 

wall-los s parameter , 
2 

PorZ l/PocvToa 

molecular weight of gas, 
lb mass/lb mole 

burning rate or K ratio para- 
meter, 2psrs/poa or  
(2/K)f (Y) 

mode number in solid phase 
pressure, lb/ft 2 

universal gas constant, 1544 
(f t ) (lb force)/( OR) (mole) 

annular radius, f t  

regression rate of propellant, 
ft/sec 

displacement vector 

gas temperature, OR 

time, s ec  



V 

V 

W 

z1 

Y 

E 

77 

x 

P 

P 

PS 

7 

V 

internal energy of solid, Btu/lb 

combustor volume, f t  

gas velocity, ft/sec 

propellant mass addition rate, 

3 

lb/sec 

acoustic admittance factor (see 

eq. (9)) 

d C V  
specific heat ratio, c 

erosive burning factor (eq. (29b)) 

shear viscosity of solid, 0.4 
(lb) (se c)/f t2 

Btu/ (f t) (se c) (OF) 

0.4(lb)( se c)/f t2 

thermal conductivity of gases, 

dilational viscosity of solid, 

gas viscosity, lb/(ft)(sec) 

gas density, lb/ft3 

solid density, lb/ft 3 

stress tensor, lb/(ft)(sec 2 ) 

local instantaneous burning rate, 
lb/( sec)(ft3) 

1 differential operator, (ft)- 

Subscripts: 

max maximum 

min minimum 

0 steady state 

r radial coordinate 

Z axial coordinate 

e angular coordinate 

1 

2 outside diameter of propellant 

inside diameter of propellant grain 

grain 

Superscripts : 

m 

n 

velocity exponent (see eq. (28)) 

pressure exponent (see eq. (28)) 

reduced parameter, instantaneous 
value divided by the steady- 
state value (see eq. (6)) 

vector 4 
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APPENDIX B 

DISSIPATION OF WAVE ENERGY IN SOLID P R O P E U N T  

The amount of energy that would be lost if the solid were vibrating can be determined. 
The maximum energy loss would occur if the pressure and outward wall velocity were 
exactly in phase. The model used is one dimensional in 8, and hence mass and momen- 
tum losses in the radial direction were not completely included in the conservation equa- 
tions. Since energy is not a directed quantity, a loss term may be added to the energy 
equation. A linear analysis of acoustic gains and losses, including all terms in the con- 
servation equations, has been carried out. The dissipation of elastic wave energy in the 
cylindrical grain may be determined from the results of Bird (ref. 15) and Bird, Hart, 
and McClure (ref. 16): 

The dissipation rate per unit length of solid wall is 

2 
real part(%) 

'1 

where r1 is the inside radius of the propellant grain, Sr is a displacement vector and 
Prr is a stress tensor in the solid grain. 
ence 15 for  the real part of the specific acoustic admittance into equation (Bl) gives: 

Substituting the approximations given in refer- 

2 - r1) 
~ i f f 

ad ~ ad 
7rrl&(kgrl)12[ f2(r2 - rl)  [ + sin- ( r2  - r 1 ) cos- ( r  

Ed = 
f - 2 4  2 f  2 f  

4p a s d  cos - ( r2  - rl) cos 
ad ('2 - '1) ad 

sin2 f. ( r2  - rl) sin L- (r2 - rl)cos2 I (r2 - 
+ 4- as ad - + - -  4 as ad -. 

f ad ksr 1 ii? ad - ('2 - rl)ksrl 2 2  
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I 

where r2 is the outside radius of the propellant grain, and r1 is the inside radius. 
This wall-loss term gives a dissipation rate per unit length of propellant around the inside 
perimeter and must be multiplied by a factor of 2/rl in order to obtain a rate of energy 
loss per unit volume of gas. The te rm is then subtracted from the right side of the energy 
equation (3). 
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